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Abstract

A rate-dependent, continuum damage model is developed for brittle materials under dynamic loading. This model
improves on the approach (ISOSCM) of [Addessio, F.L., Johnson, J.N., 1990. A constitutive model for the dynamic
response of brittle materials. Journal of Applied Physics 67, 3275-3286] in several respects. (1) A new damage surface
is found by applying the generalized Griffith instability criterion to the dominant crack (having the most unstable ori-
entation), rather than by averaging the instability condition over all crack orientations as done previously. The new
surface removes a discontinuity in the damage surface in ISOSCM when the pressure changes sign. (2) The strain
due to crack opening is more consistent with crack mechanics, with only the tensile principal stresses contributing to
the crack opening strain. This is achieved by incorporating a projection operator in the equation for the crack opening
strain. One consequence of incorporating the projection operator is a prediction of shear dilatancy, which is not
accounted for in ISOSCM. (3) The evolution of damage, which is based on the energy-release rate for the dominant
crack, has a physical basis, whereas in the previous approach the damage growth rate was assumed to be an exponential
function of the distance from the stress state to the damage surface without specific physical justification.

An implicit algorithm has been developed so that a larger time step can be used than with the explicit algorithm used
in ISOSCM. The numerical results of a silicon carbide (SiC) ceramic under several loading paths (hydrostatic tension/
compression, uniaxial strain, uniaxial stress, and shear) and strain rates are presented to illustrate the main features of
the model.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Brittle or quasi-brittle materials (e.g., ceramics, high explosives, beryllium alloys, concretes, rocks, and
many composites) are increasingly used as structural components for civil and defense applications. For
example, in an effort to reduce weight and improve mobility, modern armor designers often rely on light-
weight ceramics to provide effective protection. Ceramics are brittle materials with very high compressive
strength (particularly under confinement and high loading rate), but low tensile strength. Furthermore, at
high strain rates or sufficiently low temperature even materials that would normally be considered ductile
exhibit brittle behavior. Understanding and predicting brittle failure are critical to prevent catastrophic
engineering disasters. Consequently, modeling damage and failure of brittle or quasi-brittle materials has
received considerable attention recently from the mechanics and materials community. For example, Dube
et al. (1996) developed a rate-dependent damage model for concrete (a quasi-brittle material) under dy-
namic loading which can reproduce the major effects of the loading rate on the concrete response. Zhang
et al. (2003) proposed an anisotropic model for predicting dynamic damage and fragmentation of rock
materials under explosive loading. Their model provides a quantitative method to estimate the fragmenta-
tion distribution and fragment size generated by crack coalescence in the dynamic fragmentation process.

The modeling approaches range from the simplest ad hoc or empirical models to micromechanics-based
approaches, which lead to more accurate, often tensorial description, of material responses. The phenom-
enological approach, which has been increasingly used in constructing damage models, typically starts by
postulating thermodynamic potentials and uses irreversible-thermodynamics arguments to derive evolution
equations for the damage variables (e.g., Simo and Ju, 1987, 1989; Lemaitre and Chaboche, 1990;
Krajcinovic, 1984, 1989, 1996, 1998; Hansen and Schreyer, 1994, 1995). The micromechanical approach
typically starts with the behavior of a single defect (crack or void) and the continuum level model is ob-
tained by applying statistical averaging to an ensemble of defects (e.g., Seaman et al., 1976, 1985; Dienes,
1978, 1996; Dienes and Margolin, 1980; Costin, 1983; Grady and Kipp, 1985; Taylor et al., 1986; Rajen-
dran and Kroupa, 1989; Rajendran, 1994; Rajendran and Grove, 1996; Addessio and Johnson, 1990; Gam-
barotta and Lagomarsino, 1993; Lewis and Schreyer, 1996; Bennett et al., 1998; Hackett and Bennett, 2000;
Krajcinovic, 1998; Lee et al., 2004).

One example of micromechanical material models is Statistical Crack Mechanics (SCRAM), the theo-
retical approach developed by Dienes (1978), Dienes and Margolin (1980), Dienes (1981, 1983a, 1989,
1996) for modeling dynamic deformation and fragmentation of brittle materials. It accounts for the open-
ing, shear, growth, and coalescence of an ensemble of cracks. The crack distribution in the material is typ-
ically assumed to be initially isotropic (though the theory allows for an initially anisotropic distribution of
cracks, as in oil shale), and the anisotropy of damage is captured by tracking the evolution of mean crack
sizes with several (typically 9) orientations. The SCRAM model has been used to explain the formation of
an aspirin-shaped cavity in oil shale (Dienes, 1981), a result of bedding cracks, the violent explosions in
solid propellants caused by mild mechanical shocks such as XDT (since the cause of the detonation tran-
sition was unknown, Dienes, 1996), and the damage and failure of a ceramic armor under ballistic impact
(Meyer et al., 1999; Zuo et al., 2003).

Based on Dienes’ SCRAM theory, Addessio and Johnson (1990) proposed a simplified, isotropic damage
model (ISOSCM) for the dynamic response of brittle materials under nearly isotropic stress states (e.g., the
state produced during high-velocity plate impact). They assumed that during the damage process the dis-
tribution of cracks remains isotropic, and that the crack probability-density function is exponential in crack
size. Macroscopic crack strains and an isotropic damage surface were found by averaging the crack strains
as well as the instability condition for a single crack under a remote stress field over all crack orientations.
The resulting isotropic damage surface involves only the mean crack size, the von Mises stress, and pres-
sure, and takes two different forms depending on the sign of the pressure (p). In compression (p > 0), for
large values of the mean crack size the damage surface approaches the Drucker-Prager plastic yield surface
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for granular materials. In tension (p < 0), the damage surface resembles the Gurson surface, which describes
damage in ductile materials due to tensile void growth. The model can be viewed as a continuum damage
model with the damage variable defined by the initial crack-number density, which is assumed to remain
constant during deformation, and the mean crack size in the material. The evolution of material damage
is given through the growth of mean crack size when the stress state is outside the damage surface. That
model is compatible with the incremental continuum formulation inherent to existing design computer
codes, and can be easily implemented into such codes. The model was applied to simulate damage in ceram-
ics (silicon carbide, boron carbide, and titanium diboride) under impact conditions, and the predictions
compared favorably with shock compression and release experiments (Kipp and Grady, 1989a,b; Grady,
1989). Due to its numerical efficiency, mathematical simplicity, and origin in micromechanics, the model
has been adopted by other researchers as the starting point for developing their own damage models for
brittle materials (e.g., Bennett et al., 1998; Hackett and Bennett, 2000; Rajendran and Grove, 1996; Lee
et al., 2004). Bennett et al. extended ISOSCM to include the viscous effects of the binder materials in a plas-
tic bonded explosive and applied their model (Visco-SCRAM) to study non-shock ignition (formation of
explosive hot spots) and mechanical response of explosives. Most recently, Lee et al. (2004) adopted the
damage surface and the crack growth rate in ISOSCM as a part of their model for damage and crushing
of chopped random fiber composites. They also included nucleation of microcracks and debonding between
fibers and composites.
Three issues in ISOSCM have warranted further investigation presented here:

1. A discontinuity in the damage surface when the pressure in the material changes sign.

2. In crack mechanics, when the principal stresses have mixed signs, cracks with some orientations are
under tension and open, while others are under compression and stay closed. Only the open cracks con-
tribute to the crack-opening strain. In ISOSCM, however, whether or not a crack contributes to the
crack-opening strain depends solely on the sign of the pressure, not on the crack orientation. That is,
when the pressure is negative (tension), all crack orientations contribute even though cracks with some
orientations are under compression and do not open.

3. Damage accumulates when the stress states is outside the damage surface. The damage growth rate was
assumed to be an exponential function of the distance of the stress state from the surface. The formu-
lation is appealing in that it is analogous to the over-stress model for rate-dependent plasticity and pro-
vides a length scale, which can be beneficial to the solution of problems involving strain-softening due to
damage. However, physical justification for using such an over-stress model for damage growth was not
provided.

As discussed by Lewis and Schreyer (1996), the first two issues can lead to thermodynamic inconsistency
which is manifested as energy creation under certain cyclic load paths. The main object of the current work
is to develop a new damage model, which is more physically based and removes those inconsistencies in
ISOSCM. Specifically, in the current work, instead of averaging the crack instability condition over all
crack orientations, the damage surface is obtained by applying the instability condition to the dominant
crack. The dominant crack is defined here as the crack with the critical (most unstable) orientation which
evolves with the applied stress. In recent work (Zuo and Dienes, 2002, 2005), we have determined the crit-
ical crack orientation analytically for all possible stress states, and have presented the damage surface,
F(o,¢) =0, in terms of the applied stress and crack size. We use an extended Griffith instability criterion
(Keer, 1966; Rice, 1984), which applies to both open cracks and closed cracks with friction. The new dam-
age surface removes the discontinuity in the previous model and has many features that characterize brittle
behavior.

The crack-opening strain is now accounted for more accurately in that, when the principal stresses have
mixed signs, only the tensile principal stresses contribute to the crack-opening strain. This is achieved by
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using the idea of activated crack-opening strain proposed by Lewis (1991), which is based on the damage
deactivation work of Hansen and Schreyer (1994, 1995) and on the numerical results of Lewis and Schreyer
(1996) on crack-opening strain.

For stress states outside the damage surface (F(s,¢) > 0), the material accumulates additional damage.
Based on the results of dynamic crack growth (Freund, 1972, 1990), the evolution of damage (growth of
average crack size) is now given as a function of the energy-release rate for crack with the critical orienta-
tion. This current formulation is analogous to an over-stress model for rate-dependent plasticity.

The mathematical formulation of the model is presented in Sections 2. The numerical algorithm used to
integrate the model is discussed in Section 3. An implicit algorithm has been developed for the model so
that large time steps may be used in engineering analyses. Example problems are provided in Section 4.
Some conclusions are drawn in Section 5.

2. Model formulation
2.1. Crack strain

Consider an ensemble of penny-shaped microcracks which are randomly distributed within a statistically
homogenous volume of a brittle material under a multiaxial loading. The requirements for a material vol-
ume to be statistically homogenous are those discussed by Krajcinovic (1998). That is, the number of de-
fects (cracks) and heterogeneities within the material volume must be large and their locations and
orientations must be random (uncorrelated) and their size small compared to separation. The applied stress
may cause the opposite faces of cracks to slide and/or open, resulting in an additional strain (crack strain),
and an increase of material compliance. The change in the macroscopic compliance due to an ensemble of
microcracks has been studied extensively in the past 30 years (e.g., Budiansky and O’Connell, 1976; Dienes,
1978, 1981, 1983a, 1989, 1996; Dienes and Margolin, 1980; Oda, 1983; Oda et al., 1984; Kachanov, 1993).
Many important results from these studies can be found in the research monographs by Krajcinovic (1996)
and Nemat-Nasser and Hori (1999). The increment of the mean strain (in the sense of an ensemble average)
due to a homogenous distribution of similar penny-shaped cracks (i.e., a crack set) with the unit normal n
and radius ¢, is (Dienes, 1989, 1996)

Aec(a,c,n,t) = A& (6, c,n,t) + A&l (o, c,n, t) = n(c,n, t)AcAQoc’b(a,n), (1a)
b(e,n)=(2—-v)<n-en>n®n+ (en) ®n+n® (on) — 2(n-en)n @ n, (1b)

where ¢ is the far-field Cauchy stress and the angled bracket is the Macaulay bracket, which takes the value
of the argument when positive and is zero otherwise. In the equation, «° = 8(1 — v)/[3G(2 — v)], is a con-
stant arising from analytic solutions for open and closed penny-shaped cracks (Sack, 1946; Segedin,
1950; Keer, 1966), and G and v are the elastic shear modulus and Poisson’s ratio of the matrix (undamaged)
material, respectively. n(c,n, ) is the number density defining the distribution of crack radii and orienta-
tions, which evolves with the time ¢. That is, n(c, n, 1)AcAQ represents the number density of cracks (number
of cracks per unit volume) whose radii are between ¢ and ¢ + Ac, and have a unit normal within a small
solid angle AQ around n (e.g., Oda, 1983; Dienes, 1985). In Eq. (1b), the symbol ® denotes the tensor prod-
uct so that (en) ® n = (om1))e; ® e; and n ® (on) = (n,0;7,)e; ® e;. For the sake of compactness, the direct
notation for tensors and vectors (e.g., Gurtin, 1981) is used throughout this paper.

For an open crack (6, =n ' (en) = n;o;n; > 0), a rather special case of v = 0 corresponds to a particularly
simple form of Eq. (1), which was used by Oda et al. (1984) in formulating fabric tensors. Neglecting the
interactions between cracks (Kachanov, 1993), the total crack strain due to an ensemble of microcracks of
all sizes and orientations is obtained by summing the contributions in Eq. (1) over crack size (0 < ¢ < o)
and orientations (Dienes, 1989, 1996)
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= ZAsc(a,c,n £) / / b, n)n(c,n, t)dedQ. (2)
Q.

In terms of the usual polar coordinates (Euler angles) 0 and ¢ of the normal vector n, the incremental solid
angle is the area of an element on the unit sphere, dQ = sin ¢ d0d¢. Cracks have symmetry such that a
reversal of 180° leaves them unchanged. Thus, half the unit sphere is sufficient to characterize crack orien-
tation; consequently, the integration limits for orientation are 0 < 6 < 2n and 0 < ¢ < n/2. Experiments
(Seaman et al., 1976; Curran et al., 1987; Curran and Seaman, 1996; Scholz, 2002) indicate that the crack
number density function can often be approximated by an exponential function

No(n

S exp(c/e(n.0). )
where ¢(n, ?) is the average crack radius, and No(n) is the initial crack number density per solid angle for
crack orientation n. The number of cracks per unit volume is then N, = = [of.n(c,n,1)dedQ =
JoNo(n)dQ, which remains constant over time (i.e., there is no crack nucleation or coalescence during
deformat1on). It follows from Eq. (3) that for a given orientation n, the number density of cracks with
radius larger than ¢ is N(c,n,1) = [~ n(c,n,7)de = No(n) exp(—c/c(n, 1)), which decreases exponentially
with the crack radius.

Following Addessio and Johnson (1990), it is also assumed here that the crack density distribution fol-
lows Eq. (3) and that cracks of all sizes are initially present in the material. Consequently, the damage is
characterized by the average crack radius ¢(n, ), which evolves with time 7. Material anisotropy is reflected
in the dependency of ¢(n, ) on the crack orientation n (e.g., when material spall occurs in plate-impact
experiments, ¢(n, #) would be concentrated in the direction of impact; at the other extreme, when the mate-
rial is under hydrostatic tension and cracks become unstable, ¢(n, #) would increase with time, but is inde-
pendent of the crack orientation n).

Substituting b(e,n) and n(c,n, ¢) given by Egs. (1b) and (3), respectively, into Eq. (2) and carrying out the
integrations over the crack radius ¢ gives the total crack strain as

&(o,1) = 8(0,1) + &.(0,1), 4)

with the open crack strain and shear crack strain given by

n(c,n, t) =

& (o, l—v/No ’(n,#) <n-on>n®ndQ, (5a)
‘ 161—v
&(0,1) =3 27‘}/N0 t){(en) ®n+n® (en) —2(n - on)n @ n} dQ. (5b)

&(o,1) is a deviatoric tensor (i.e., trgl(e, 1) = 0), i.e., the sliding of crack faces does not contribute to dilat-
ancy; however, this does not imply that the theory precludes shear dilatancy (positive volumetric strain).
Under a pure-shear state of stress, because the maximum principal stress is tensile, there is a range of crack
orientations for which the cracks are open; consequently, Eq. (5a) predicts shear dilatancy. Dilatancy under
pure-shear stress is discussed in Appendix A.

In the original SCRAM theory (Dienes and Margolin, 1980; Dienes, 1996), material anisotropy was ac-
counted for by keeping track of a number of crack orientations (normally 9), each with its own mean crack
size. It is assumed here, as in ISOSCM (Addessio and Johnson, 1990), that the initial crack number density
is isotropic (No(n) = Np) and that the average crack size remains isotropic during loading (¢(n,#) = ¢(r)),
independent of the crack orientation. The intended use of the current model is for materials which do
not exhibit strongly anisotropic damage and for stress states close to the hydrostat, such as in plate
impact experiments, where the shear stress is often several orders of magnitude less than the pressure. With
the assumption of an isotropic distribution of cracks, Addessio and Johnson (1990) found the analytical
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expression for crack strains by carrying out the integration over all crack orientations. The shear crack
strain is

64n 1 —v
(6,0) = — Noc'a* 6
2(6,0) = 25 3N, (6)
where 6 = 6 + pi and p = — (tre)/3 are the stress deviator and pressure, respectively; i being the second-

order identity tensor. It is noted that the explicit dependency of crack strain on time (#) has been replaced by
the dependency on the mean crack size ¢, which evolves with time.

In ISOSCM, the crack opening strain is zero if the pressure is positive (p = 0). When the pressure is neg-
ative (p <0), the crack opening strain is found by carrying out the integration in Eq. (5a) over all crack
orientations. The result can be written as

g(6,c) = % (1 —v)Noe (O’ + %tr (a)i)H[—p], (7)

where H is the Heaviside function, which is one for a positive argument and zero when it is negative. The
following well-known results (e.g., Batchelor, 1967) are useful in deriving the expressions for crack strains
in Egs. (6) and (7):

/dQ:27r7 (8a)
/Qn®ndQ=2?ni, (8b)
/(n®n)®(n®n)d9:%((i®i)+ZI), (8¢)

where I is the symmetric fourth-order identity tensor having the components of ;= (040, + 9y 05)/2, in
terms of the Kronecker delta 4.

The expression for the crack opening strain in Eq. (7) is consistent with crack mechanics for the stress
states in which all three principal stresses have the same sign. Under that limitation, the sign of g, for an
arbitrary crack orientation n is the same as the sign of the principal stresses. Therefore, all the cracks are
closed when the pressure is positive (p = 0) and no crack opening strain can develop. Conversely, for a neg-
ative pressure (p < 0), all cracks are open and contribute to the crack opening strain, so the integration can
be taken over all crack orientations. Eq. (7) is inconsistent with crack mechanics, however, when the prin-
cipal stresses have mixed signs (e.g., pure-shear). For those stress states, cracks with some orientations are
open while some others are closed, and the status of a crack (open or closed) cannot be determined by the
sign of the pressure. In fact, regardless of the sign of the pressure, there is always a range of orientations, in
the neighborhood of the direction of each tensile principal stress, in which cracks are open. The range de-
pends on the relative magnitudes of the compressive and tensile principal stresses. Whether or not a crack
orientation should be included in the integration in Eq. (5a) depends on its angles with the principal stres-
ses; therefore, Eq. (7), based on the sign of the pressure, is not adequate. Indeed, Lewis and Schreyer
(Lewis, 1991; Lewis and Schreyer, 1996) have found some anomalous results when Eq. (7) is applied to cer-
tain stress paths. They considered those stress states in detail and proposed a modification to Eq. (7). In
their modification, when the principal stresses have mixed signs, the integration in Eq. (5a) is taken only
inside the cone defining open cracks,

& (0,c) :E(l —v)NoE3</ (n®n)®(n®n)dQ>a. 9)
G n-on>0

For a given stress o, the range of integration over crack orientation is determined by n-en> 0. Let
6 =), ,,0€ ®e where g, 05, 03 and e, e,, e5 are the principal stresses and principal directions (unit
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vectors), respectively. The principal stresses are sorted in descending order (6, > g, > 03) so that the mate-
rial is said to be under pure-tension if g3 > 0, and under pure-compression if g; < 0. The tension-compres-
sion stress states correspond to g1 > 0 > 03, i.e., the principal stresses have mixed signs; thus, Eq. (7) of
Addessio and Johnson needs to be modified. The tension-compression case can be subdivided into two,
according to the sign of g5, the intermediate principal stress. For g, < 0, the crack normal can be taken as

n = cos ¢e; + sin ¢ sin Oe, + sin ¢ cos e, (10)

in terms of the azimuthal angle 0(0 < 0 < 2n) and declination angle ¢ (0 < ¢ < n/2) with respect to the
principal stress axes. The open crack strain becomes

£(0.0) = 2(1 - v)Noc30'/02n de/j"(n ®n) ® (n©n)sin pdg, (11)
with the limit of the declination angle

¢, = cot™! \/Xzsinze + y3c0820, (12)
in which the parameters are defined as y; = — o/, = 0, i =2, 3. A similar expression can be derived for

a, > 0 (with ¢ being the angle with the e; axis). In general the integration in Eq. (11) has to be carried
out numerically. Lewis and Schreyer (1996) have performed such numerical integrations for a number of
stress states and provided analytical fits to the numerical results.

2.1.1. Activated crack-opening strain

The modification by Lewis and Schreyer (Lewis, 1991; Lewis and Schreyer, 1996) for crack opening
strain (i.e., Eq. (11)) is exact but requires numerical integration over crack orientations. This can be com-
putationally intensive since the integration has to be performed at each time step when the stress state
changes. Consequently, Lewis (1991) proposed using the activated crack-opening strain, which does not re-
quire numerical integrations, as an approximation to Eq. (11). The approximation is based on the numer-
ical results of Eq. (11), and on the damage deactivation work of Hansen and Schreyer (1994, 1995). The
main idea is to eliminate the contribution of the compressive principal stresses to the opening strain.
The activated crack-opening strain is defined as a projection of the strain given in Eq. (7),

0 =) — 64 =3pt d 5 Sp +
s (o,c) = 15G(1 v)Noc’P (P +2P P'o, (13a)
where the spherical and deviatoric projection operators are
1
Pszg(i@vi), P! =1- P (13b,¢)

Eq. (13a) reduces to Eq. (7) for the special cases when P* =T and p <0, or P* = O and p > 0. The positive
projection operator in Eq. (13a) is defined as

P =Q' AQ", (14a)

where the cross composition of two symmetric second-order tensors, represented by the operator “A”, is
defined as

1
ANB =2 (AuBy + AuBy) (e 0 €, @ e D). (14b)

Q" in Eq. (14a) is the positive spectral tensor of the stress, which is defined as

Q" = Z Hloile; @ e;. (15a)

i=13
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The components of the positive projection operator are then

Pou =5 (0105 +010%). (15b)

It follows from the definition that Q" is a symmetric, second-order tensor. Our definition for the positive
projection operator (Egs. (14) and (15)) differs slightly from that in Hansen and Schreyer (1994, 1995)
where the operator is defined as P;k, = 0,0;;- The operator deﬁned here possesses the minor symmetries,
that is, P, = Pj;, = P}, which are absent i m thelr definition (P, ) However, the two definitions produce
the same results when the projection operator is applied to symmetric (second-order) tensors, which is the

case in the current work. The projected stress is then defined as

6" =P'e=(Q" A Q*)o. (16a)
It follows that a; = (1/2)(Q0;, + O jk)ak, Q;,;ale;;, namely, 6" = Q"¢ Q™, in terms of second-order
tensors.

Lewis (1991) compared the approximation in Eq. (13a) to the numerical results in Eq. (11) for a variety
of stress states involving mixed signs of principal stresses, and found the approximation reasonable. Be-
cause no numerical integration is needed, Eq. (13a) is simpler and more efficient than Eq. (11); conse-
quently, we will use it for the crack opening strain.

When a material is under pure tension, i.e., o1 = 6, = g3 > 0, we have H[o;]= 1, the positive spectral
tensor becomes the second-order identity tensor (Q" =i), and the positive projection operator reduces
to the symmetric fourth-order identity (P = I). Consequently, 6" = ¢, and the crack opening strain given
by Eq. (13a) reduces to Eq. (7). Similarly, when 0 > ¢, > 0, > o3, the material is under pure compression,
and the positive spectral tensor and positive projection operator vanish (Q" = o, P* = 0). Thus, there is no
crack open strain (£(e,¢) = 0), again in agreement with Eq. (7). However, the current formulation,
Eq. (13a), differs from Eq. (7) when the principal stresses are of mixed signs (¢; > 0 and g5 < 0). In terms
of the principal stresses and principal directions,

o= ae e, o =) (o)exe, (16b)
j=13 =13
where the angled bracket again is the Macaulay bracket defined previously. Since o, > 0 and a3 < 0, we
have

2 if 0, <0,
=o' + «€o ®eo¢7 N = { .
’ ’ 1;36 3 if oy > 0. (16C)

That is, the projected stress (6") retains the tensile principal components of the stress (4), and removes the
compressive ones. Thus, the positive projection operator (P") in Eq. (13a) eliminates the contribution of the
compressive principal stresses to the crack opening strain. This differs from Eq. (7) where either all or none
of the principal stresses (tensile and compressive) contribute to the crack opening strain depending on the
sign of pressure.

Finally, the total crack strain is obtained by substituting the expressions for crack shear strain and crack
opening strain given by Egs. (6) and (13a) into Eq. (4)

g.(6,¢) = f°Noc’ <23 o' +P* <Pd + gpsp) Pﬂ;) : (17)
-V

where p°=64n(l — v)/(15G) is a material constant depending on the elastic properties of the matrix
(undamaged) material. Appendix A illustrates the use of the positive projection operator in calculating
the crack strain for a pure-shear stress state (principal stresses of mixed signs).
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2.2. Stress—strain relationship

In the absence of other inelastic mechanisms (such as plasticity, viscoelasticity, etc.), the total strain is the
sum of the matrix strain &,, and crack strain &/(e,¢),

& =&y + &(0,0). (18)
For an isotropic, linear elastic matrix material, the matrix strain is
&m = CmO', (193)
1 1
_ __ Ppsp = pd
Cu 3KP +2GP , (19b)

where C,, and K =2G(1 + v)/(3(1 — 2v)) are the compliance and bulk modulus of the matrix material,
respectively. Substitution of Egs. (17) and (19a) into Eq. (18) yields the stress—strain relationship:

o’ +P" <Pd + ZPS"> P+a> . (20)

3
&= Cno + N (2

If the damage tensor D(¢) is defined by &.(a6,¢) = D(¢)a, then,
¢(a,c) = C(0)o, (21a)
C(c) = Cy +D(e). (21b)

The current compliance of the damaged material, C(¢), is the sum of the matrix compliance and the added
compliance due to cracks. It follows from Egs. (20) and (21) that the damage tensor is

D(c) = Ny’ (%Pd +P* <Pd + gPSP>P+). (22)

The expression for the damage tensor D(¢) suggests the dimensionless crack density variable d(¢) = N,c’ as
a measure of damage in the material. The damage tensor D(¢) is isotropic when the principal stresses are all
tensile or all compressive. When the damage is isotropic, the response remains isotropic with the damaged
shear and bulk moduli. Appendix B provides the detailed derivation of the damaged moduli as functions of
the damage variable d(c) for the cases where the principal stresses are of the same sign.

When the principal stresses have mixed signs, however, Eq. (22) predicts anisotropic damage with the
directions of tensile principal stresses accumulating more damage than other directions. This is
because cracks normal to any compressive principal stresses are closed; hence they cannot contribute to
the normal component of the compliance in the directions of compressive principal stresses. Hansen and
Schreyer (1994, 1995) defined this situation as damage deactivation. In their formulation, damage is only
attributed to the “mode-I" (opening mode) loading; consequently, all damage will be deactivated under
compressive loading. In the current formulation, however, the damage due to crack shearing is still ac-
counted for even when the open damage is deactivated under compressive loading. For reactive materials,
it has been argued (e.g., Dienes, 1982; Dienes, 1996; Bennett et al., 1998; Hackett and Bennett, 2000) that
the frictional heating due to shear cracks can cause the formation of explosive hot spots. In fact, in Visco-
SCRAM (Bennett et al., 1998; Hackett and Bennett, 2000) only shear damage is considered, and the vol-
umetric response is taken as linear with the bulk modulus of the matrix material. That formulation is a spe-
cial form of Eq. (22) for the pure-compressive stress states discussed earlier. For all other stress states where
at least one of the principal stresses is tensile, the current formulation predicts “normal” damage, in addi-
tion to shear damage. An example of the pure-shear stress state is provided in Appendix A to illustrate the
use of the positive projection operator in calculating the damage D(c).

Since the number density of cracks Ny is assumed to remain constant during deformation, damage is
accumulated only through increase of the average size ¢. The evolution of damage d(¢) through the growth
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of average crack size ¢ is determined by the damage surface and the crack growth equation. We now devel-
op the damage surface and the evolution equation for mean crack size. Damage increases when the stress
state is outside the damage surface.

2.3. Damage surface

When the applied stress is sufficiently large, some cracks in the material can become unstable and grow in
size. We assume here that the material accumulates additional damage if the crack with the average size ¢ in
some orientation is unstable, which occurs when the applied stress exceeds the critical value for that orien-
tation. We also assume that cracks remain penny-shaped and are either open or closed, depending on the
sign of the normal component of the remote traction on the crack surface. The Griffith instability criterion
for a single crack with size ¢ and normal n is, in terms of the energy-release rate,

g(a,n,¢)
2y

where 2y is the critical energy release rate with y being the effective surface energy of the material. The en-

ergy-release rate for a penny-shaped crack under mixed-mode loading, which applies to both open cracks

and closed cracks where interfacial friction is important, has been developed (e.g., Keer, 1966; Rice, 1984).
The energy-release rate can be written as

f(e,m)c 4 (1 —v)
G w2-v)

The expression for the stress function f{a,n) depends on whether the crack is open (the normal component

of traction is tensile) or closed (the normal component is compressive and controls the interfacial friction).

For an open crack (g, > 0), both normal and shear stresses contribute to crack instability and the stress
function f{e,n) is (Sack, 1946; Segedin, 1950; Keer, 1966)

flom) = (1-3)a2 +s, (23¢)

F'(e,n,c) = -1=0, (23a)

g(o,n,c) = (23b)

where the normal and shear components of the remote traction are 6,, =n - enand s, = [n - ¢°n — (n - o-n)z]l/ 2,

respectively. For a closed crack (g, < 0), the friction on the crack surface stabilizes the crack. If the Coulomb
friction law is assumed, then the stress function f{a,n) is (Rice, 1984)

fle.n) = (s, + po,) H(s, + po,), (23d)

where p is the static friction coefficient of the material and H is the Heaviside function defined earlier.

For a given crack size and stress state, the critical (most unstable) crack orientation, n°, maximizes the
function f{e,n), hence the energy-release rate g(e,n°,¢). The crack with that orientation becomes unstable
at the lowest applied stress and is defined here as the dominant crack. The damage function is defined by
applying Eq. (23a) to the critical orientation n°,

F(e,c) = F"(6,n°¢). (24)

The damage surface is defined by F(e¢,¢) = 0, outside which (i.e., F(a,¢) > 0) the material accumulates
additional damage and responses inelastically. We have found, for all possible stress states, the critical
crack orientation, and determined the stress needed for the crack with that orientation to become unstable,
hence, the damage surface (Zuo and Dienes, 2002, 2005). The following is a summary of the relevant
results.

The damage surface F(a,¢) = 0 takes on one of the four different forms, depending on the stress state
(the signs and relative magnitudes of the principal stresses). The four forms include tension (F°), compres-
sion (F°), combined opening and shear (F°°), and pure shear (F*®).
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2.3.1 0] = 0y = 03 = 0
Material is in pure-tension; consequently, all cracks are open. The damage surface reduces to that of the
Rankine maximum tensile criterion for brittle materials:

o my—_ O 2 = n2—vGy
F(o',c)_Scr((_:)/\/m 1=0, Scr()_”21—v6' (25)

The critical crack normal is in the direction of maximum principal stress, n° = e.

2.3.2. 0 = 0] = 0y = 03
Material is in pure-compression; all cracks are closed and friction on crack surfaces plays an important
role in resisting crack instability and hence increasing material strength. The damage surface becomes

Ve t1+po —(Vet+l-—pwo, (26)

28.:(¢) '
This surface coincides with the Mohr—Coulomb surface for a brittle material with the cohesion of the mate-
rial taken as S, (¢), which decreases monotonically during damage accumulation as the mean crack size (¢)
increases. The damage surface based on the instability condition for the dominant crack provides a justi-
fication for the Mohr—Coulomb surface for brittle materials and the means to relate the cohesion constant
to the defects in the materials. The angle between the critical normal (n) and es, the direction of largest
compressive principal stress, is 0 = tan~!(\/u? + 1 + ), which implies that as the friction coefficient p
increases, the critical crack plane becomes increasingly parallel to the largest compressive stress direction
(axial splitting).

Fé(o,c,1) =

2.33. 0;,>0and 63<0

Material is in tension-compression; cracks with certain orientations are open and the rest are closed. The
damage surface depends on the relative magnitudes of the principal stresses. Let r = 03/a; <0 denote the
stress biaxiality in the o, — g5 plane. Then,

2331 —1<r<0 (ie, 6; = — 03)
a. —(1 —v) <r<0. The damage surface and the critical crack orientation are the same as case 2.3.1
(pure-tension state of stress).
b. —1 <r<— (1 —v). The critical crack is in combined tensile and shear loading (all three modes are
present, e.g., Rice, 1984; Kachanov, 1993). The damage surface has an elliptic cross section,

2 o1 + o3\ 2 o1 — 03\ 2
SN e e N

The angle of the critical crack normal with the e; axis is

R N ) 1+r
0 =5 cos {(V l)lr}' (28)

2.332.r < —1 (i.e., (0] < — 0'3)
a. r < —(/12 + 1 + p)>. The damage surface and the critical crack orientation are the same as 2.3.2 the
pure-compression state of stress.
b. — (/1> +1+ ,u)2 < r < —1. The critical crack is a pure-shear crack (¢, = 0) and the damage surface
has a hyperbolic cross section,
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0103
Sa(€)

The angle of the critical normal with the e; (tensile) axis is 6* = tan~'(1/y/—7).

The damage surface F(a,¢) =0 (Egs. (25)-(27) and (29)) involves only the current stress (the maxi-
mum and minimum principal stresses, o; and a3, respectively) and the mean crack size ¢. The intermedi-
ate principal stress (g,) has no effect on the damage surface. This is a consequence of the instability
condition (i.e., Eq. (23a)), which is independent of the stress components in the plane of the crack.
The damage surface for a triaxial stress state is illustrated in Fig. 1. The applied axial (o1;) and radial
(033 = 02) stresses are normalized with respect to the tensile-damage threshold of the material
(Sow = 040/ PL; Pl = Sei(¢)/+/1 — v/2), which decreases with crack size ¢ (Eq. (25)). The surface captures
the main features of brittle behavior under triaxial loadings. For example, the compressive threshold
stress is much larger than the tensile threshold stress (the former increases significantly with pressure
and friction coefficient while the latter is independent of friction). The damage surface is also similar
to the fracture surfaces for brittle materials that other researchers have proposed and are supported
by experimental data (McClintock and Walsh, 1962; Keer, 1966; Alpa, 1984). Those researchers consid-
ered brittle materials containing isotropically distributed cracks and assumed that fracture occurs when
crack with the worst (critical) orientation becomes unstable.

Fig. 2 is a comparison of the new damage surface and the damage surface used in ISOSCM, which was
based on averaging the crack instability condition over all crack orientations. The state of stress is taken to
be triaxial (uniform lateral confinement). In ISOSCM, the damage surface was given in terms of the
pressure and von Mises (shear) stress (1 = /(3/2)69 : 69 ). Consequently, we have transformed the new
damage surface from the principal stress space into the plane of normalized pressure and shear

F™(6,¢) = — —1=0. (29)

St

Fig. 1. Damage surface for a brittle material under triaxial loading for values of the friction coefficient () ranging from 0 to 2.0.
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To

ISOSCM

current

Po

Fig. 2. Comparison of the current damage surface and that used in ISOSCM (Addessio and Johnson, 1990).

(Py = p/P.,; 79 = t/P..). In this plane, the only material constants that affect the damage surfaces are the
Poisson’s ratio v and friction coefficient x. The same set of material constants (v = 0.25 and p = 0.2) was
used in generating the two surfaces. Both surfaces predict the same value when the material is under iso-
tropic (hydrostatic) tension, since in this case every orientation is equally critical and hence the two ap-
proaches are identical. Both approaches predict no damage evolution (crack growth) under hydrostatic
compression (7 = 0), consistent with crack mechanics. For a non-isotropic stress state (t > 0), the current
approach predicts less shear before additional damage accrues than the previous approach. This is consis-
tent with the assumptions that damage grows when the crack with any (the critical) orientation is unstable
while the previous approach assumes damage can grow only when the crack with some averaged orienta-
tion is unstable. The most important difference is that the new damage surface based on the critical orien-
tation is continuous, whereas the surface based on orientation-averaging has a jump as the pressure changes
sign. The jump in the damage surface, an artifact of averaging the instability condition over all crack ori-
entations, is unphysical. It has been shown (Lewis, 1991; Lewis and Schreyer, 1996) that the jump causes
energy creation under certain cyclic load paths and renders the model thermodynamically inconsistent.
Note that the stresses in Figs. 1 and 2 have been normalized and hence are non-dimensional.

2.4. Damage evolution via crack growth

For a stress state outside the damage surface F(o,¢) > 0, the material will accumulate additional damage
via growth of the mean crack size. Rajendran and Grove (1996) derived a crack growth law based on the
equation of motion for the crack tip for a single crack (Kanninen and Popelar, 1985; Freund, 1972, 1990).
The result is that the crack growth rate is a function of the applied energy-release rate. The crack growth
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law used in the current work is similar to that by Rajendran and Grove, but here we use the energy-release
rate for the crack with the critical orientation (the dominant crack) to calculate the growth rate. This is
consistent with the derivation of the current damage surface, which is based on the instability of cracks with
the critical orientation. The crack growth law is

. 2y
C = Cmax 1 - N/
e < g(O', ne, C)> (30)

where ¢ax 18 the terminal speed for crack growth. The terminal speed ¢,y is either the shear wave speed of
the matrix for closed cracks, or the Rayleigh wave speed Cg for open cracks, which is only slightly less than
the shear wave speed (e.g., Cr = 0.93C;, for a Poisson’s ratio of v = 0.3, Meyers, 1994). The choice depends
on whether the crack with the critical orientation is open (¢,(n°) = n° - en° > 0) or closed (5,(n‘) < 0). Recall
that y is the effective surface energy of the material, and therefore 2y is the critical energy release rate for a
penny-shaped crack (e.g., Rice, 1984). It follows that the crack growth speed asymptotically approaches the
terminal speed as the energy release rate increases.

Since the damage function is based on the energy release rate for the critical orientation, we can conve-
niently relate the crack growth to the damage function. Substituting Egs. (23a) and (24) into Eq. (30) yields
an expression for the rate of growth of mean crack radius in terms of the damage function F(e,¢):

c 1
e T (Pl e

The crack growth rate is zero when the stress state is inside or on the damage surface (F(a,c) < 0), and
increases monotonically with F(s,¢), the distance of the stress state from the damage surface, when the
stress state is outside the surface (F(o,¢) > 0). Since F(o,¢) = 0 defines the damage surface, the value of
F(e,c) represents a measure of the distance of the stress state from the damage surface. The proposed
rate-dependent damage evolution law (Eq. (31)) is analogous to the classical over-stress model frequently
used in rate-dependent plasticity (e.g., Lubliner, 1990). The need for including the rate-dependence in plas-
ticity, especially in the context of modeling material responses involving softening and localization, has long
been recognized (e.g., Addessio and Johnson, 1993). The rate-effects provide a length-scale which is absent
in a rate-independent model, but is needed in a well-posed initial/boundary value problem.

In the original formulation of ISOSCM, two approaches were considered for the damage growth rate. In
the rate-independent approach, the crack growth rate is solved for by requiring that the material state re-
main on the damage surface (similar to using the consistency condition in the rate-independent plasticity
formulations). It was found, however, that for crack sizes smaller than a critical value, the approach
unphysically predicts crack healing (negative growth rate). Consequently, a rate-dependent approached
was used in ISOSCM, in which the crack growth rate was assumed to be an exponential function of the
distance of the stress state exceeding the damage surface. Numerical calculations of a single cell under a
prescribed uniaxial strain path suggest the rate-dependent approach was reasonable. However, no physical
justification was provided for that assumption on the crack growth rate. The current formulation (Eq. (31))
is a modification to the rate-dependent approach in the original formulation. Since the damage function
used here is directly related to the energy release rate for the critical crack orientation, it provides some
physical justification for using the rate-dependent over-stress model for damage evolution.

In computer calculations, for a time step which gives the stress state inside or on the damage surface,
F(a,¢) <0, it follows from Eq. (31) that there is no damage accumulation during the step and the response
is elastic. However, if the stress state is outside the surface (F(o,¢) > 0), additional damage accumulates
according to the evolution equation (Eq. (31)), and the response is inelastic. The detailed algorithm for
advancing the damage is given next.
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3. Numerical algorithms

The rate form of the constitutive equation (Eq. (21)) may be written as

E=bn b =ém+ (B +8) =Cno+ (D(c)d' + al;—éc)éa). (32)
That is, the total strain rate is the sum of the matrix strain rate (&, = C,,6) and the crack strain rate &. The
crack strain rate is made up of an elastic contribution due to the rate of change in stress (¢! = D(¢)6) and an
inelastic part (& = & = ¢(0D(¢)/d¢)s), due to damage accumulation (crack growth). It is emphasized here
that the elastic strain rate includes both the matrix strain rate and a part of the crack strain rate, namely,
& = &y + ég’. This was not included in ISOSCM (Addessio and Johnson, 1990). It is interesting to observe
that the inelastic strain rate, which is due to crack growth, is like a viscous strain rate in that it is propor-
tional to the stress tensor, not its rate.
In a computer program, the strain rate is often obtained from the momentum equation and one needs to
find the stress rate and the rate of damage growth. To that end, the constitutive laws of Eqgs. (31) and (32)
are recast as

6= (Co+D@)'(&—&), (33a)

& = (3¢/c)D(¢)a, (33b)

E=¢ (1 - ;> (33¢)
- max 1 + <F(6,Z’)> b)

where Eq. (22) for the damage tensor has been used to compute 0D(¢)/dc. It follows from Eq. (33a) that
(& — &) is the elastic strain rate (&) and (C,, + D(¢)) ™" is the instantaneous elasticity tensor of the damaged
material. Eq. (33a) is a special form of the general result in Dienes (1996), which is based on the superpo-
sition of strain rates, rather than the superposition of strains adopted here. We have shown that the two
approaches yield the same result.

With the damage tensor D(¢) defined in Eq. (22), the rate equations for stress and mean crack size can be
integrated numerically. Consider a time step Ar=7""" — " with the total strain increment given by
Ae = §At. Suppose the stress and crack size at the beginning of the time step are given by (¢”,¢"). The goal
of the algorithm is to find the stress and crack size at the end of the time step (6"*!,¢"*!). We will now de-
velop an implicit algorithm for updating the material state (¢"*!,¢"*!). An implicit integration algorithm
offers the advantage of placing no additional stability constraint on the size of the time step, which could
be an issue for the explicit algorithm (as we will see later).

Eliminating the inelastic (crack growth) strain rate (&£') in Eqs. (33a) and (33b) results in an evolution
equation for the stress in terms of stress and crack size. Applying the backward Euler integration scheme
to that evolution equation gives the final stress as

o) = (1 +3 (1 - %) (C + D)ID) B (o"’ +(Co + D)*‘As), (34)

where the relationship ¢Ar = ¢"*! — ¢ has been used, and the dependency of D(¢"*!') on ¢"*! has been

dropped for compactness. With the material state at the beginning of the step (¢”,¢") and the strain incre-
ment (Ag) given and fixed, the final stress 6" is a function of the final crack size "*' only. The final crack
size ¢"*! is solved with the following procedure. First, define the trial state by assuming the step is elastic,
i.e., there is no crack growth during the step, ¢ = ¢":

6" =6" + (Co + D(@)) ' Ac. (35)
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If both the stress state at the beginning of the time step and the trial stress state are inside or on the damage
surface, i.e., F(6",¢") < 0 and F(¢",c") < 0, then the step is indeed purely elastic. In this case, the trial state
is the final solution, "' = ¢, ¢" ! = 6'*. Otherwise, the step involves crack growth and a correction to the
trial state is needed. Depending on whether the trial state is inside or outside the damage surface, one of the
following two algorithms is used:

A. F(6",c¢") > 0. The trial state is outside the damage surface, as illustrated in Fig. 3. Applying the cen-
tral difference scheme (the trapezoidal rule) to the evolution equations for the crack size (Eq. (33c)) yields

E.n+1

_ |
YR (1 1 +1(F(emt e + <F(0'”,c”)>)> =0. (36)

With ¢! given by Eq. (34) as a function of ¢"*! only, Eq. (36) is a nonlinear equation for ¢!, which can
be solved by an iterative method, using the trail state (¢",¢") as the starting state for the iteration. During
the iteration, the solution is constrained to be outside the damage surface,

F(a"', ") > 0. (37)

Once ¢"*! is solved, the final stress can be calculated from Eq. (34).

B. F(6",¢") < 0 and F(6”,¢") > 0. The step starts with the stress state outside the surface, and ends with
the state possibly inside the surface, as illustrated in Fig. 4. The material is unloaded during the step, but
cracks still grow during the first portion of the time step when the stress state is outside the damage surface.
For the rest of the time step, the stress state remains inside the damage surface and the material unloads
elastically. Physical justification for possible crack growth during unloading is that, due to inertia, crack
arrest does not occur instantaneously; rather, it takes a finite amount of time for a dynamically growing
crack to decelerate into an equilibrium state. We first find the equilibrium state (6°¢,¢°?) and the fraction
of the time step (A7°? < At) needed for the crack growth to reach the equilibrium (¢™* = 0). According to
Eq. (31), the equilibrium is reached when the stress state reaches the damage surface from outside. This
is done by first applying the discretized evolution equations (Egs. (33)) over the sub-step Az°9, and requiring
the equilibrium state to be on the damage surface (F (6%, %) = 0),

F(6,c")=0
F(e,c"")=0

Fig. 3. Sketch of the prediction-correction algorithm for the step with F(e,¢") > 0.
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F(6,8")=0
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F(s".2")<0 F(e“,c)=0
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Fig. 4. Sketch of the numerical algorithm with F(¢",¢") < 0 and F(e”,¢") > 0.

- -1

6°4(c%, Ar*) = (I +3 (1 - CCTq) (Cn + D)‘ID) (o"’ + A*(Cyy + D)—l(i;)7 (38)
1

cl=c" 1- .maxA eq7

c e +< 1+F(an,cﬂ>/2>c ’ (39)

F(6%,¢%9) =0, (40)

where D = D(¢%), a function of ¢®. Since F(a",¢") is known, As°? can be easily solved from in Eq. (39), in
terms of ¢4

AfCI(ceQ):ceq_c"< 2 +1). (41)

é‘max F(O‘n, En)

Substituting Az°? into (38) yields the equilibrium stress ¢° as a function of the equilibrium crack size ¢4
only; consequently, Eq. (40) becomes a nonlinear scalar equation for ¢*4, which can be solved by an algo-
rithm similar to the one used to solve Eq. (36).

The rest of the step is elastic unloading with the elastic strain increment given by Ae® = (A — Ar*9)é. The
final crack size and stress are

Z’n+1 _ E,eq7 (423)
o = 6% + (Cp + D(@)) " A, (42b)

In deriving the discretized evolution equations for the crack size (Egs. (36) and (39)), the central differ-
ence scheme has been used, rather than the backward Euler scheme. In addition to the accuracy consider-
ation (the central difference is a second-order scheme while the backward Euler is first-order), there are two
practical reasons for the choice. (1) Because F(6°1,¢1) = 0 at the equilibrium state, using the backward
Euler scheme would erroneously prevent crack growth over the sub-step A°%. (2) For some test problems
with large time steps, our iterative method using the Euler backward scheme converges very slowly (or even
fails to converge sometimes) whereas the method converges rapidly using the central difference scheme.

In high-rate applications such as chemical explosions or high-velocity mechanical impact problems, ex-
plicit analysis codes can often be used effectively with small time steps. In that situation, it is often more
efficient and simpler to use the explicit algorithm to integrate the evolution equations. In the explicit
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algorithm, the crack growth and the inelastic strain due to crack growth are determined from the material
state (i.e., stress and crack size) at the beginning of the time step (z,):

Ac = emaxm<1 —~ 1+<F(lac)>) (43a)

Aef = (3Ac/c")D(c")e". (43b)
The stress and crack size at the end of the step are then

@t =2+ Ac, (44a)

"' =d"+ (Cp + D)) ' (A — Ae¥). (44b)

Because no iterations are need, the explicit algorithm is simpler and faster than the implicit algorithm dis-
cussed earlier. However, the explicit algorithm often poses a strict limit on the size of the time step. Fig. 5
compares the model predictions using the implicit and explicit algorithms with 4 different time steps (from
0.01 ns to 10 ns). The loading is uniaxial strain with a strain rate of &, = 10> s~!, and the model material is
silicon carbide (SiC) ceramic. The material constants are taken from ISOSCM (Addessio and Johnson,
1990) and reproduced in Table 1 for convenience. As the time step is reduced, both the implicit and explicit
algorithms converge to the same result (the curve in the middle with Az < 0.1 ns). It is also shown that the
implicit algorithm gives a more accurate result for large time steps. For Az =10 ns (corresponding to a
strain increment of Ag;; = 107%), the explicit algorithm produces severe oscillations.

0.015

G111
(Mbar)

0.005

1 1
0 0.0025 0.005
€1

Fig. 5. Comparison of the predicted stress—strain responses using implicit (I) and explicit (E) algorithms with 4 time-step sizes: 10 ns,
1 ns, 0.1 ns, and 0.01 ns.
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Table 1

Material constants for SiC ceramic (Addessio and Johnson, 1990)

p (g/cm?), mass density 3.177

G (Mbar), shear modulus 1.869

v, Poisson’s ratio 0.16

¢y (cm), initial crack size 14.x 107
Ny (cm™), crack number density 1.0x10°
y (Mbar cm), surface energy 1.0x 1078
u, friction coefficient 0.26

4. Numerical examples

To illustrate the features of the proposed model, several standard load paths (hydrostatic, uniaxial
strain, uniaxial stress, and pure-shear) have been simulated with the stand-alone driver program. The re-
sults are given in Figs. 6-10. The model material is the same SiC ceramic used in Section 3.

Fig. 6 shows the stress response (Fig. 6a) and the crack size evolution (Fig. 6b) to a hydrostatic (isotro-
pic, € = &11i, 6 = —Pi), cyclic loading, with a strain rate &; = 10° s~!. The material is initially stress-free
(point A) and is first loaded up to a tensile strain of 0.01 (C), then unloaded back to zero strain (A) and
reverse loaded (compression) to a strain of &; = —0.0005 (D), and finally reloaded to a tensile strain of
0.0195 (E). The bold-faced letters used in this section refer to the various points labeled in the figures.
The evolution of the damage surface is superimposed on the stress—strain response (Fig. 6a). The initial
loading path (A-A’-B—C) begins with an elastic response A—A’, with the slightly damaged modulus corre-
sponding to the initial crack size ¢, = 14 um. When the stress reaches the initial damage surface (A’), ini-
tiating crack growth this causes the damage surface to contract with further straining. Though the size of
the damage surface starts to decrease immediately due to crack growth, the stress level in the material still
increases with strain until a peak value (B) is reached. This is because the rate of damage accumulation,
which is proportional to the square of the crack size, is small when the crack size is small, and the inelastic
strain rate due to the crack growth (£ in Eq. (33b)) is too small to influence the total strain rate
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Fig. 6. The predicted response under hydrostatic (isotropic), cyclic loading: (a) pressure-strain response; (b) evolution of the crack size
as a function of the strain.
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path superimposed on the damage surface.

significantly. Consequently, the response remains “strain-hardening” (A’-B). Because &' increases with
crack size and distance from the stress state to the damage surface, for a given total strain rate &, the inelas-
tic strain rate &5 eventually approaches the total strain rate and the material response changes from hard-
ening to softening (B—C). This is in contrast to the rate-independent formulations, where the stress state is
required to remain on the damage surface from the consistency condition, and softening would occur
immediately after the stress state reaches the damage surface. In the current rate-dependent formulation,
the stress state is allowed to be outside the damage surface by a distance proportional to the rate of loading.

The unloading path (C—C’—A) begins at C and, because the stress state is outside the damage surface,
crack growth continues until the stress unloads enough to reach the surface (point C’). From C’, the mate-
rial unloads elastically (with the damaged modulus) back to the origin (A), where both the matrix strain and
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Fig. 9. Comparison of the behaviors under uniaxial stress for tensile and compressive loadings starting at A, the unstressed state.

crack strain are zero, and all the cracks are completely closed. The segment A—D corresponds to reverse
loading (hydrostatic compression) of the damaged material with the crack size attained at C’
(¢; = ¢ = 10¢y). Because the cracks remain closed under compression, damage accumulated in the material
is deactivated (cracks of size ¢; are still present). Consequently, the material assumes the original
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Fig. 10. The effects of loading rate on the material response.

(undamaged) stiffness. The reloading path (D—A—C’—E) starts from D and continues elastically with the
undamaged stiffness back to the origin (A). On further loading, the cracks (with the increased size ¢,) open
under tension and the damage, which has been accumulated at C’, becomes active again. Consequently, the
reloading path follows the segment A—C’. The path intersects the damage surface at point C’, and the crack
size again increases along the path C'—E. The stress state is outside the damage surface due to rate effects.

It is shown in Fig. 6b that the cracks are initially stable when the stress level is low (A—A’), become
unstable at A’, and grow rapidly at first due to the high values of energy release rate, then slowly as the
stress level drops. On unloading, the cracks continue to grow slightly (C—C’), and then arrest and remain
stable (the stress state is inside the damage surface). During reloading, the cracks remain stable (D—C’) un-
til the stress reaches the damage surface again at point C’. During the rest of the reloading path (C'—E),
cracks continue to grow.

The uniaxial strain response, which is given in Fig. 7, shows features similar to the hydrostatic loading
simulation discussed above. The strain rate and loading history are the same as for the hydrostatic loading.
Since the material develops both pressure and shear stress under uniaxial strain loading, a three-dimen-
sional plot showing the path of the stress state (p,t) and crack size (¢) is provided in Fig. 7c. The damage
surface is also superimposed on the stress path. Note that since the elastic portions of the stress path (i.e.
A—A’ and C'—D) are inside the damage surface, they should be hidden by the surface but the computer
graphics software does not have a hidden line removal capability. The uniaxial strain loading was also con-
sidered by Addessio and Johnson (1990) using ISOSCM. Predictions of the two models have similar fea-
tures. For example, both models predict the initial linear elastic response with the slightly damaged
modulus due to the small initial crack size until the stress state reaches the initial damage surface. Then
there is a rapid decrease of stress (both tension and shear stress) as the result of fast crack growth. Both
models show that the stress continues to decrease, but at a much slower rate, after the material has accu-
mulated substantial damage (large crack size). The stress path evolves outside the damage surface when the



3372 Q.H. Zuo et al. | International Journal of Solids and Structures 43 (2006) 3350-3380

damage accumulates, as required by the rate-dependent formulation. The current model shows a much
smoother response than the previous model.

The response for pure shear is shown in Fig. 8. The loading rate and history (loading-unloading-reload-
ing) are the same as in the hydrostatic and uniaxial strain simulations. Features similar to the hydrostatic
and uniaxial loading are observed. One main difference is that, upon reverse loading, the material does not
recover the original, undamaged modulus. This is due to the fact that the maximum principal stress is al-
ways positive (tensile) under shear loading (reversing the shear direction only rotates the maximum princi-
pal direction by 90°). Consequently, the material damage is unchanged when the shear direction is reversed.

The responses for the conditions of tensile and compressive uniaxial-stress are compared in Fig. 9. Only
the strain rate in the loading direction is specified (¢;; = £10°> s~! for tension and compression, respec-
tively). The strain rates in the lateral directions (&, é33) are solved using the stress-free condition in those
directions (g3, = g33 = 0). Both tension and compression responses show features similar to the other
loading paths. That is, both load elastically until the initial damage surface is reached (A’), show first
“strain-hardening” (increasing of stress with strain) before the peak stress (B) when crack size is small,
and post-peak softening (B-C) when crack size is large enough. Because the positive projection operator
(P™) for tension loading is different from that for compression loading (P™ = 0 for compression), the initial
stiffness for tension is smaller than for compression. The stiffnesses appear to be the same in Fig. 9 because
the initial damage is very small (dy = Nocj = 0.27 x 107%) for the model material. We have increased the
initial crack size from 14 um to 140 um, and the results (not shown) indeed show significant differences
in the initial stiffnesses.

Fig. 9 also shows that the critical stresses for initial damage growth (A’) are significantly different for
tensile and compressive loadings. The critical stress under uniaxial compression is more than twice that
for uniaxial tension with a friction coefficient of only 0.26. This is a result of using the damage surface given
in Section 2.3. Under uniaxial tension, the damage surface is given by Eq. (25), and the critical stress is
o, = 0}, = S«(Co)/+/1 — v/2. With the material constants for the SiC given in Table 1, the critical stress
is 0, = 0.007 Mbar. The damage surface for uniaxial compression is given by Eq. (26), and the compressive
critical stress is g, = —of; = 2(\/12 + 1 + p)Scc(¢o). With u=0.26, the compressive critical stress is
a.=0.017 Mbar. The numerical results shown in Fig. 9 reflect these theoretical predictions.

The ratio of compressive critical stress to tensile critical stress is a./c; = 24/1 —v/2(\/12 + 1 + ),
which increases with the friction coefficient u . With u = 0.26, the ratio of compressive to tensile critical
stresses for the SiC is 2.48. In clean microcracks where there may be significant cohesion the value of u
is much higher. For example, a friction coefficient of unity is used by McClintock and Walsh (1962) to
study the effect of interfacial friction on the compressive strength of rocks. Their predicted compressive
strength compares favorably with experimental data for a variety of rocks under different confining pres-
sures. For = 1.0 and Poisson’s ratio v = 0.2, the current model gives the ratio of ¢./c, = 4.58.

As discussed earlier, the current model is rate dependent (Eq. (31)). The rate effects on material response
are shown in Fig. 10, where the results of six different loading rates (from 10 s~ ! to 10° s ') are given. It is
seen that the stress increases first modestly with the strain rate for the rate up to10® s™!, then dramatically
for high strain rate ( > 10 s~!). This dramatic increase in the stress is due to the dynamic effects associated
with the high speed crack growth (Freund, 1990).

5. Summary and conclusions

A rate-dependent, continuum damage model has been developed for the dynamic response of brittle
materials containing an isotropic distribution of cracks. The current model (DCA, Dominant Crack
Algorithm) is based on the ISOSCM model of Addessio and Johnson (1990) and recent work of Zuo
and Dienes (2005) on the instability of penny-shaped cracks under general stress states. The main features
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of the current model are the following: (1) A new damage surface, which defines the onset of damage evo-
lution, is found by applying the generalized Griffith instability criterion for the critical (most unstable)
crack orientation. The damage surface is a composite of four surfaces defining the stability of penny-shaped
cracks. The four surfaces reflect the fact that the critical crack orientation strongly depends on the state of
stress (e.g., the critical crack plane changes from being normal to the loading direction to being almost par-
allel to it when the loading changes from uniaxial tension to uniaxial compression). The new damage sur-
face removes a discontinuity in the damage surface in ISOSCM, as the pressure in the material changes
sign. (2) The crack strain due to crack opening is treated in a more physical manner in the current model.
For the stress states where the principal stresses have mixed signs only the tensile principal stresses contrib-
ute to the crack opening strain. This is achieved by incorporating the positive projection operator in the
equation for the crack opening strain. One important consequence is that classical dilatancy (volume in-
crease due to shear), a physical feature of brittle materials, but not accounted for in ISOSCM, is included
in the current model. (3) The evolution of damage, in terms of the growth rate of the mean crack size, is
based on the energy-release rate for the dominant crack (having the critical orientation). The crack growth
equation is based on the work of Freund (1990) on dynamic fracture. Since both the damage surface and
growth are based on the same energy-release rate, the damage evolution equation has been cast into a form
analogous to over-stress models for the rate-dependent plasticity formulations. In ISOSCM, the damage
growth rate was assumed to be an exponential function of the distance of the stress state from the damage
surface with no specific physical justification. The current formulation has a better physical basis than the
ISOSCM formulation.

Both the explicit and an implicit algorithm for numerically integrating the evolution equations for stress
and damage (mean crack size) have been developed for the model. A comparison of the numerical results
using the two algorithms has been provided for uniaxial strain loading. The numerical results show that a
larger time-step can be used with the implicit algorithm than with the explicit algorithm (ISOSCM uses the
explicit algorithm). A driver program has been written which provides the strain history to the material sub-
routine for updating the material state (stress and mean crack size). Numerical simulations for a silicon car-
bide (SiC) ceramic under several loading paths (hydrostatic tension/compression, uniaxial strain, uniaxial
stress, and shear) and different strain rates are presented to illustrate the main features of the model. The
response to uniaxial strain loading predicted by the current model is similar to those using ISOSCM. The
numerical results also show that the current model captures many important features of brittle materials
under dynamic loading.

The linear volumetric response (EOS, Equation of the State) for the matrix material has been assumed in
the current model for simplicity (although the response for the damaged material is still nonlinear when
there is a tensile principal stress due to volumetric crack strain). This is appropriate for low-pressure appli-
cations, but when strong shock waves are generated, the nonlinear effects of the volumetric response cannot
be neglected. Incorporating a nonlinear EOS and implementing the model into an analysis code are goals
for future work. We also plan to apply the model to particular brittle materials (e.g., ceramics, propellants,
explosives, and beryllium alloys) under high strain-rate loadings (e.g., plate impact and spall problems).

The current model also can be viewed as a simplified implementation of the SCRAM theory developed
by Dienes, 1978, 1983a,b, 1996, a general approach to brittle behavior that accounts for opening, shear,
growth and coalescence of cracks in the context of large deformations and extreme pressures and temper-
atures. Whereas Dienes’ original implementation of SCRAM accounts for the individual development of
cracks with different orientations (hence capturing anisotropic damage), the current implementation simpli-
fies the algorithms and hence speeds up calculations by emphasizing the growth of cracks with the most
unstable (critical) orientation. The number of material constants for the current model has been kept to
a minimum. In addition to the elastic constants (mass density, shear modulus and Poisson’s ratio), there
are only 4 damage constants: the crack number density Ny and initial crack size ¢y, which characterize
the initial damage in the material; the effective surface energy y and friction coefficient u, which determine
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crack growth (hence the evolution of damage). Having a small number of physically-based model constants
can be advantageous in applications where an extensive set of material test data is not available.

The representation of brittle behavior with an ensemble of penny-shaped cracks has been used for many
years at Los Alamos and elsewhere, but only recently have we formulated analytic criteria that define the
orientation of the most unstable cracks and the critical condition, accounting for both open cracks and
closed cracks with interfacial friction. This makes it possible to carry out calculations with precisely deter-
mined orientations for growth. This may prove to be significantly more efficient and effective than an alter-
native procedure that we have used that examines the individual stability of cracks with many different
orientations. In a recent verification study of SCRAM, for example, the dynamic response of an axisym-
metric thick ring to internal pressure was considered and we found that 30 orientations on the unit hemi-
sphere are needed to get good accuracy and up to 480 orientations to get accuracy at the 2% level (Dienes
et al., 2004). This situation arises because compression failure may occur within only a narrow range of
orientations. The full machinery of SCRAM may be required in complex situations however, where numer-
ous orientations become unstable at different times, a situation that can occur, for example, in impact on
complex targets such as armor with multiple layers. Detailed studies are planned, but have not been initi-
ated at this time.

The current model (DCA), like its predecessors (SCRAM, ISOSCM and Visco-SCRAM), is designed to
account for the behavior of brittle materials, but in this implementation we are attempting to formulate the
simplest viable model that accounts for the statistics of crack growth. Thus the effects of crack nucleation
and coalescence (annihilation) during deformation, as well as interactions between cracks, are not ac-
counted for, nor do we attempt to combine brittle and plastic behavior or nonlinearities in the equation
of state. According to Kachanov (1993), for a solid with a given arrangement of cracks the effects of crack
interactions on the effective elastic moduli of the solid may be very small. Crack coalescence can play an
important role in the failure of brittle materials. However, at the early stage of damage when cracks are
still too far apart to intersect each other, the effects of crack coalescence on damage are small (Dienes,
1996). Exclusion of crack nucleation in the model is partially justified by the fact that cracks of all sizes
(from zero to infinite) are assumed to exist prior to loading. Crack coalescence, as well as crack hardening
(R-curve behavior), crack inertia (onset and arrest), and hot spots in reactive materials are addressed in the
full version of SCRAM (Dienes et al., 2005).

In summary, the procedure described herein appears to have the potential for significantly improved
accuracy, but more precise calculations and experiments are needed to confirm the merits of this approach.
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Appendix A. The positive projection operator for a pure-shear stress state
To illustrate the procedure for finding the positive projection operator and activated open crack strain,

consider a material under a pure-shear stress in some reference (e.g., Lab) basis given by E, (¢« =1, 2, 3).
The stress is then
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O':S(E2®E3 +E3®E2), (Al)

where E,—E; defines the shear plane. Without loss of generality, it is assumed here that s > 0. The principal
stresses and principal directions are

or=s, 0,=0, 03=-s, (A.2a)
e = (B, +E)/V2, e=E;, e =(E —E;)/V2 (A.2b)
The positive spectral tensor defined in Eq. (15a) is
Q+:e1®e1:%(E2®E2+E3®E3+E2®E3+E3®E2). (A.3a)
In the reference basis (E,), the components of Q" are
. 000
[Q*]Ey =5 0 1 1/. (A.3b)
01 1
The positive projection operator and the projected stress are, using Eqs. (14) and (16a),
P =(e;®e)A(e;Re) =€ Qe Qe Qe (A4a)
6" =P'oc = (e -ge)e;®e =aie; ®e =se De. (A.4b)

The components of 6" are

00 0
[a+]Ex:% 01 1]. (A.5)
01 1

It can be readily verified that using the alternative formula 6” = Q"6¢Q™, which involves only second-order
tensors, yields identical results. The corresponding damage tensor D(¢) given by Eq. (22) is

D(c) = ; pdC) (6P +e @e ®e @e), (A.6)

where d(¢) = No¢® and 6 = 1/(1 — (v/2)). In deriving the results, the following relations based on Egs.
(13b,c) have been used:

2 1
(e1®e1) :Pd(e1®e1):§, (e1®e1) :PSp(e1®e1):§. (A7)
The activated open-crack strain given by Eq. (13a) is
o - e i 3 e i 3
& (o,c) = f°d(c) oA Re ®e ®e |o=d(C) 35 e ®e. (A.8)
Since tre = 0, the stress deviator is
O'd :O':S(el X e —e3®e3). (Ag)

The total crack strain &.(o,¢) given by Eq. (17) is then

3
e(0,¢) = Jsfd(C)(0(e @ &1 — e @ es) + e @), (A.10a)
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with the components in the Lab basis

3 0 00 { 0 00
lec]g, = <§>sﬂed(5) 010 0 1 +3 01 1}]. (A.10b)
010 0 1 1

Laboratory tests indicate that when a brittle material is subject to a deviatoric stress (e.g., pure shear), its
volume increases with stress, a phenomenon called dilatancy (e.g., Scholz, 2002). The stress state here is
pure shear, so the volumetric crack strain is due to dilatancy. It follows from Eq. (A.10a) that the dilatancy
is

tr(e.(o,¢)) = tr(g(o,¢)) = %sﬁed(é). (A.10c)

In ISOSCM, Addessio and Johnson (1990) did not account for shear dilatancy, but suggested that it should
be included in the future development. Dilatancy can result from crack opening under shear or from joint
opening under shear. Here, we consider only the former mechanism. Joint or crack opening as a source of
dilatancy has been incorporated in SCRAM and plays a role in the response of ceramic armor to impact
(Meyer et al., 1999; Zuo et al., 2003).

In a computer algorithm for anisotropic material response it is more efficient and easier to manipulate
and interpret numerical results if the stress and strain tensors are represented with six-dimensional vectors
(Voigt—Mandel form). In the Voigt—-Mandel form, the fourth-order compliance tensor is represented by a
6 X 6 matrix (e.g., Mason and Maudlin, 1999). The damage tensor D(¢) given by Eq. (A.6) has a particu-
larly simple matrix form in the principal basis of stress (e;—e,—e3):

F2/3 —1/3 —1/3 0 0 07 [1 0 0 0 0 0
13 2/3 —1/3 0 0 0 000000
“1/3 ~1/3 2/3 0 0 0 000000
D —25die) | s All
ID(E)lyy =5 Fd(c) 0 0 o 100/ looo0oo0o0o0 (A1)
0 0 0 01 0 000000
0 0 o 00 1] |loo oo o0 o]

In the principal basis, the Voigt—-Mandel form of the stress is
{J}VM = {S,O, _S707070}T7 (AlZ)

where the superscript “T”” denotes the transpose. The crack strain is then
3
{SC}VM = [D(E)]VM{G}VM = Esﬁed(é{la Oa 715 Oa Oa O}T + {13 Oa Oa Oa Ov O}T)v (A 13)

which agrees with the tensor result given in Eq. (A.10a,b).

Appendix B. Damage moduli for the cases of isotropic damage

When the principal stresses are of the same sign (either all tensile or all compressive), the damage is iso-
tropic in the current model. Since the matrix material is assumed to be isotropic, the damaged material re-
mains isotropic, and the material response can be separated into deviatoric and spherical parts:

d
d=——— tre=—
2G(e) 3K (¢)

tro

Q

: (B.1)
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where &% = & — (tre/3)i is the deviatoric part of strain tensor, and G (@) and K (¢) are the shear and bulk
moduli of the damaged material, respectively. Expressions for G( ) and K (¢) for the cases where the stress
state is either pure-compression (B.1) or pure-tension (B.2) are derived below.

B.1. Material is in pure-compression (0 = o; = a0, = 03)
Since the principal stresses are compressive, all cracks are closed. It follows from the definitions (Egs.

(14a)—(15a)) that Q" =0 and P" =0, null tensors. The damage tensor given by Eq. (22) is purely
deviatoric:

D(c) = T BN PO (B.2)

Multiplying the stress—strain relation (Eq. (20)) by the deviatoric projection operator (PY) gives

e(o,c) = (2G ;_ﬁ ) (B.3)

The damage shear modulus is found by comparing Egs. (B.3) and (B.1):

~ G e 128m1 —v
G(C)_1+ygNoé3’ =5 oy

The elastic constant y¢ changes only slightly with the Poisson’s ratio.
Since the damage tensor is purely deviatoric, there is no influence of damage in the bulk modulus, and
the volumetric response is linear elastic with the matrix’s bulk modulus, K (¢) = K.

B.2. Material is in pure-tension (6; = 6, = a3 >0)

It follows from Egs. (14a) and (15a) that Q" =i and P" = I. The damage tensor given by Eq. (22) has
both deviatoric and spherical parts,

D(¢) = f°Noc’ (5 + SPS") (B.5)

2—v 2

The deviatoric response and spherical response are found by multiplying Eq. (20) by the deviatoric projec-
tion operator (Pd) and the spherical projection operator (P°P), respectively,

1 5-
d =\ e
&'(e,c) = (ZG 7 Noc ) (B.6a)
1
tre = (3K + 2/3 NOZ’3) tre. (B.6b)
Comparing Eq. (B6) with Eq. (B.1) gives

1 1 5—-v . &,
2@( ) =35G + 7= Nyc

1 1

= 4= ﬁeNO*‘.

3K(e) 3K 2
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Thus, the damage moduli are

~ G . 1287 (5—v)(1 —v)

G(c) = 1o NG NS =Tz g , (B.7a,b)

. K 64n 1 —?

K(C) = — = —— . B.8a,b
O = Trene “=3 1- (B-8a,b)

For a typical value of v =0.25, the elastic constants relating the reduction in shear and bulk moduli to the
scalar damage measure (d(¢) = Noc’) are ¢ = 34.5, 7¢ = 54.6 and k¢ = 125.7. It follows from Eqs. (B4) and
(B7b) that y¢ = ((5 —v)/3)yS > y5. Thus, for the same amount of damage d(c), the reduction in the shear
modulus is greater when the material is under tensile loading than under compressive loading. This is be-
cause a tensile loading causes cracks to open and hence creates crack opening strain which has both spher-
ical and deviatoric components (Eq. (5a)); the deviatoric component induces an additional reduction in the
shear modulus.

Addessio and Johnson (1990) suggested that d(¢) = 2.0 approximately corresponds to the complete loss
of load-carrying capacity (hence failure) of a brittle material. It has also been suggested (e.g, Rajendran,
1994) that a critical value of crack density can be used to predict failure of brittle materials. For
d(c) = 2.0, the damaged shear and bulk moduli are degraded to a small percentage of their undamaged val-
ues (1.4%, 0.9% and 0.4%, for compressive shear, tensile shear, and tensile bulk moduli, respectively).

When the principal stresses are of mixed signs (e.g., when the material is subjected to pure shear), the
damage tensor is no long isotropic, consequently, the material response cannot be fully described by the
shear and bulk moduli alone.
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